

Ertragsgutachten

PV-Kraftwerk Cobbel

Dachanlage

Auftraggeber:

MABI GmbH

Jörg Fahrenhorst

Eilveser Hauptstraße 56

31535 Neustadt

Ilmenau, 25.04.18

Version Nr.: 1.1

Gutachtennummer: EG-K097-18009-V11

Auftragnehmer:

Ingenieurbüro JERA Pfaffenholz 11 98693 Ilmenau

> E. Jeueuckeu Dipl. Ing. Eva Jenennchen

(Bearbeiter)

Inhaltsverzeichnis

		Seite
Inhalts	sverzeichnis	2
1.	Zusammenfassung der Ergebnisse	3
2.	Beauftragung	4
3.	Technische Auslegung der Photovoltaikanlage	5
3.1.	Anlagentechnik	5
3.2.	Beschreibung und Bewertung der Anlage	6
3.3.	Plausibilitätskontrolle der Verschaltung	7
3.4.	Aufstellung PV-Generator	7
4.	Rahmenbedingungen zur Ertragssimulation	10
4.1.	Simulationsprogramm	10
4.2.	Randbedingungen / Parameter für die Berechnung	10
4.3.	Wetterdaten am Standort	15
5.	Simulationsergebnisse	18
5.1.	Referenzrechnung mit PVSyst 5.74	18
5.2.	Vergleichsrechnung mit greenius 3.6	19
5.3.	Bewertung der Ergebnisse/ Unsicherheitsanalyse	20
5.4.	Langzeitverhalten	21
6.	Gewährleistung	21
7.	Abkürzungsverzeichnis	22
7.1.	Begrifflichkeiten	22
7.2.	Einheiten	22
8.	Tabellenverzeichnis	23
9.	Abbildungsverzeichnis	23
10.	Anhang: Simulationsprotokolle, Berechnungsgrundlagen	23

1. Zusammenfassung der Ergebnisse

Der folgende Überblick stellt die Ergebnisse der Ertragssimulation für die PV-Anlage dar.

Installierte PV-Nennleistung:

499,23 kWp

(Nach Datenblattangabe)

Jährlich eingespeiste Energie:

445,5 MWh

(auf Mittelspannungsebene)

Spezifischer Jahresertrag:

892 $\frac{kWh}{kWp*a}$

(Jährlich eingespeiste Energie / PV-Nennleistung)

Performance Ratio: 87,2 %

Ertragssimula	Ertragssimulation								
PV-Anlage Cobbel Dachanlage	α/°	β/°	* E _{G,hor} / kWh/m ² a	** E _{G,gen} / kWh/m ² a	F _A / %	P _{inst} / kWp	E _{out} / MWh/a	E _{spez} / kWh/kWp*a	PR / %
Nordwest	123	15	1.038	951	-8,4	217,08	179,04	825	86,7
Südost	-57	15	1.038	1.096	5,6	217,08	208,48	960	87,6
Nordost	-145	15	1.038	912	-12,1	32,13	25,31	788	86,4
Südwest	35	15	1.038	1.132	9,1	32,94	32,67	992	87,6
Gesamt			1.038	1.023	-1,4	499,23	445,50	892	87,2

Anlage: Anlagentyp: Dachanlage dachparallel

verwendetes Verschattungsmodell:Sicherheitsabschlag 0,5 % nach Simulation PVSOL

Simulation * verwendete Strahlungsdaten: Durchschnitt aller recherchierten Daten

** Einstrahlungsmodell: nach Perez

Tabelle 1: Zusammenfassung der Ergebnisse

α Abweichung von Süd – negatives Vorzeichen: Ostabweichung

β Modulneigungswinkel

E_{G,hor} Globalstrahlung, horizontal

 $E_{G,gen.}$ Globalstrahlung auf die geneigte Ebene F_A Einstrahlungsgewinn $E_{G,gen}$ zu $E_{G,hor}$

P_{inst.} installierte Leistung unter STC-Bedingungen nach Datenblatt

E_{out} Jahresertrag PV-Anlage auf Mittelspannungsebene

PR Performance Ratio

E_{spez.} spezifischer Jahresertrag PV-Anlage

2. Beauftragung

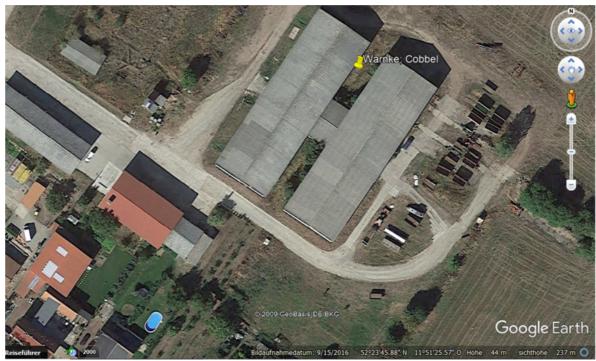


Abbildung 1: Satellitenbild des Anlagenstandortes

Quelle: Google Earth

Auftragsdatum:	11.04.2018			
Auftraggeber:	MABI GmbH			
Anlagengröße:	499,23 kWp			
Anlagentyp:	Dachanlage			
Standort:	Cobbel ((52°24' nördliche Breite; 11°51' östliche Länge;44 ü. NN.)			
Wechselrichter:	<u>Hersteller</u> :	Huawei		
	Wechselrichtertyp:	SUN2000 33 KTL		
Module 1:	<u>Hersteller</u>	JA Solar,		
	<u>Modultyp</u>	JAP6(K)-60/270/4BB 270 Wp		

Tabelle 2: Beauftragung

Dieses Gutachten umfasst 23 Seiten und 32 Seiten Anhang, unvollständige oder im Zusammenhang sinnesentstellende Veröffentlichungen oder Weitergabe der Ergebnisse darf nicht erfolgen.

3. Technische Auslegung der Photovoltaikanlage

3.1. Anlagentechnik

Modulhersteller:	JA SOLAR
Modultyp:	JAP6(K)-60/270/4BB
Zellentechnologie:	Polykristallines Silizium
Nennleistung Modul::	270 Wp
Nennleistung PV-	
Anlage:	<u>Gesamt</u> : 499,23 kWp
Stückzahl Module	1.849
Zertifizierungen:	IEC 61215, IEC 61730, TÜV Schutzklasse II
Leistungsgarantie:	Linear 80 % auf 25 Jahre Mindestleistung
Produktgarantie:	12 Jahre
Leistungstoleranz: Laut Datenblatt	+ 5 Wp (rein positiv)
Modulmaße (L x B x H)	1650 x 991 x 35 mm

Tabelle 3: Zusammenfassung Anlagentechnik Modul

Hersteller:	Huawei
Wechselrichter:	SUN2000 33 KTL
AC-Nenn-Leistung:	30,0
Europäischer Wirkungsgrad:	98,4 %
Anzahl:	14

Tabelle 4: Zusammenfassung Anlagentechnik Wechselrichter

3.2. Beschreibung und Bewertung der Anlage

Photovoltaikmodul

Die gewählten Solarmodule enthalten je 60 polykristalline Solarzellen. Der *Aufbau der Module* entspricht dem bewährten Standard eines in Aluminium gerahmten Laminats aus hochtransparentem Solar-Sicherheitsglas, EVA-Folie mit eingebettetem Zellverbund und rückseitiger Tedlarfolie.

Für die untersuchte PV-Anlage kommen Module der *Leistungsklasse* 270 Wp mit den Bezeichnungen JAP6(K)-60/270/4BB zum Einsatz.

Für die mögliche *Abweichung der Modul-Nennleistung* wird vom Hersteller eine rein positive Toleranzspanne von bis zu 5 Wp angegeben. *Der Hersteller gibt auf die Module* eine lineare *Leistungsgarantie von 80% auf 25 Jahre*. Für Material- und Verarbeitungsfehler besteht eine stark erweiterte *Produktgarantie* von 12 Jahren.

Die Module besitzen folgende **Zertifizierungen**: IEC 61215, IEC 61730, TÜV Schutzklasse II für Systemspannungen bis 1.000 V.

Für das Gutachten wird davon ausgegangen, dass die Module eine Lebensdauer von mindestens 20 Jahren erreichen.

Wechselrichter

Die eingesetzten Wechselrichter Huawei Sun2000 weisen einen hohen Wirkungsgrad auf und befinden sich technologisch auf dem aktuellen Stand.

Die Geräte erzeugen ausgangsseitig 230 / 400 V auf drei Phasen. Der Wechselrichter lässt sich unproblematisch mit vielfaltigen Möglichkeiten zur Datenaufzeichnung und Fernüberwachung z.B. über das Internet ausstatten, so dass eventuelle Störungen kurzfristig erkannt werden können.

Transformator, Energiemessung

Der erzeugte Solarstrom des PV-Kraftwerks wird über einen Transformator auf die Mittelspannungsebene von 20 kV gebracht.

3.3. Plausibilitätskontrolle der Verschaltung

Bei der Beschaltung ist am Anlagenstandort nur selten mit überlastungsbedingten Abregelungen der Wechselrichter zu rechnen. Daraus folgende Minderungen des Jahresertrags wurden simuliert und sind nicht zu erwarten.

Die Spannungen der Modulstrings bei Betriebstemperatur liegen innerhalb der MPP-Spannungsbereiche der Wechselrichter.

Die maximale Leerlaufspannung der Strings bei -10°C liegt innerhalb der maximal zulässigen Eingangsspannungen der Wechselrichter.

Die Plausibilität wurde mit Hilfe der Software PVSyst überprüft.

3.4. Aufstellung PV-Generator

3.4.1 Allgemeine Vorbemerkung zu Verschattungseinflüssen

Durch ein Hindernis können generell zwei Abschattungsarten verursacht werden. Die Abschattung des direkt eingestrahlten Sonnenlichtes, welche klar abgegrenzte Schattenfiguren verursacht, ist gemeinhin bekannt. Weiterhin wird durch das Hindernis aber auch immer ein Teil des sichtbaren Himmelsraumes verdeckt. Dies ist gleichbedeutend mit einer teilweisen Abschattung der für die Stromproduktion einer PV-Anlage ebenfalls wirksamen diffusen Himmelsstrahlung. Während die Abschattung des direkten Sonnenlichts nur bei Sonnenschein auftritt und das Ausmaß des Schattenwurfs vom Sonnenstand abhängt, ist die diffuse Abschattung ganzjährig wirksam.

3.4.2 Situation am Anlagenstandort

Abbildung 2: Modulbelegungsplan

In den vom Kunden zur Verfügung gestellten PVSOL Berichten ist die Verschattung des PVGenerators berücksichtigt. Die Verschattungssimulation berechnet 0,5 % Verluste durch Verschattungen. Nach Beurteilung des Gutachters entspricht dieser Verlustansatz den Erwartungen.

3.4.3 Verschattungsanalyse

Die PV-Anlage Cobbel wird in dem gleichnamigen Ortsteil der Stadt Tangerhütte im Landkreis Stendal, Sachsen-Anhalt errichtet. Die Gegebenheiten vor Ort wurden durch den Gutachter anhand der eingereichten Unterlagen untersucht.

Die PVA befindet sich auf Dächern eines Landwirtschaftsbetriebes.

Der Verlustansatz durch Verschattungen beträgt 0,5%. Dieser wurde mit der Software PVSOL berechnet.

Es wird davon ausgegangen, dass während der gesamten Anlagenlaufzeit keine Nahverschattungen des PV-Generators durch die Errichtung baulicher Objekte, Wachstum von Bäumen oder Sträuchern o.ä. entstehen.

Die Horizontlinie am Anlagenstandort ist flach, so dass hierdurch keine ertragsmindernden Einstrahlungsverluste auftreten.

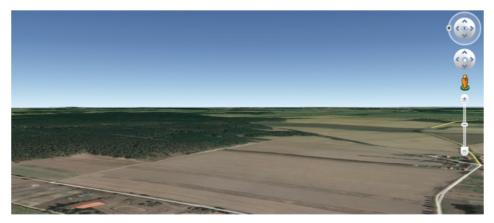


Abbildung 3: Horizontlinie Richtung Ost; Quelle: Google Earth

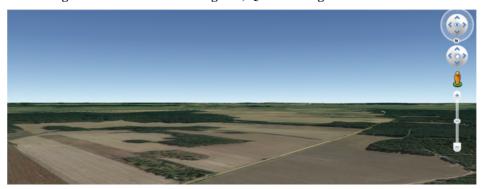


Abbildung 4: Horizontlinie Richtung Süd; Quelle: Google Earth



Abbildung 5: Horizontlinie Richtung West; Quelle: Google Earth

4. Rahmenbedingungen zur Ertragssimulation

4.1. Simulationsprogramm

Die Ertragssimulation wurde mit dem anerkannten Computerprogramm PVSyst 5.74 zur Ertragsberechnung von Photovoltaikanlagen durchgeführt, welches an der Universität in Genf entwickelt wurde. Eine Kontrollrechnung erfolgte mit dem an der Fachhochschule für Wirtschaft und Technik Berlin entwickelten Simulationsprogramm greenius 3.6. Weiterhin wurden die im Anhang angegebenen technischen Daten der Wechselrichter sowie die Generatoraufstellung gemäß den vom Anlagenplaner übersendeten Unterlagen berücksichtigt.

4.2. Randbedingungen / Parameter für die Berechnung

Parameter	Ansatz in %
Missmatchverluste:	-1,0%
Leistungsabweichung der Module :	+1,0%
Spannungsabfälle in der DC-Verkabelung:	-1,0 %
Verschmutzung	-1,5 %
Horizont und Nahverschattung:	- 0,5 %
AC-Kabel- und Trafoverluste:	-1,0 %
Albedo:	20 %

Tabelle 5: Parameter für die Ertragsberechnung

Die in PVSyst manuell einstellbaren Parameter zur Spezifizierung der Ertragsverluste/-gewinne wurden für die Simulationsrechnung nach Tabelle 5 festgelegt. Über die hier angegebenen Werte hinaus werden von dem Programm zahlreiche weitere Betriebsverluste berechnet, die im Ergebnisprotokoll als Ganzjahres-Verlustdiagramm aufgeführt sind (siehe Anhang).

• Mismatchingverluste:

Korrekturfaktor: -1,0%

Da Modulstrings in der Regel in Reihe verschaltet werden, addieren sich die Spannungen. Der Strom im String richtet sich entsprechend nach dem Modul mit dem geringsten Strom, wenn man zunächst davon ausgeht, dass keine Bypassdiode verbaut ist. Die tatsächlich erreichte Generatorleistung ist somit geringer als die Summe der Nennleistungen der Module, die sich ergebende Differenz wird als *Missmatchverlust* bezeichnet.

Die Höhe des Missmatchverlustes ist bei Reihenschaltung maßgeblich von den Modulströmen, bei Parallelschaltung von den Modulspannungen abhängig. Es ist daher sinnvoll, Module nach ihrem Strom im MPP zu sortieren, bevor sie zu Strings verschaltet werden. Bei der Parallelschaltung von Strings sollten wiederum möglichst Strings mit gleicher Stringspannung zusammengeschaltet werden. Geht man davon aus, dass reale Modulparameter je nach Hersteller um etwa 10 Prozent von den Datenblattangaben abweichen, würde der Missmatchverlust im schlimmsten Falle ebenfalls 10 Prozent betragen. In der Regel betragen die Verluste zwischen 1 % und 3 %. Der Verlust wurde mit einem niedrigen Ansatz festgelegt, da die Module nach Strömen vorsortiert vom Hersteller geliefert werden.

• Leistungsabweichung der Module von den Herstellerangaben:

Korrekturfaktor: +1,0%

Bei der Herstellung der Module kommt es produktionsbedingt zu unterschiedlichen Leistungen bei Modulen des gleichen Typs. Nach Fertigstellung der Module werden diese vermessen (Flashlisten). An Hand der Vermessung werden die Module nach ihren Leistungen sortiert und in die entsprechenden Leistungsklassen eingestuft. Einige Hersteller sortieren ihre Module ab Mindestleistung. Die auf der PV-Anlage verwendeten Module weisen nach Datenblattangaben eine rein positive Leistungstoleranz von 0 bis +5Wp auf. Der Erwartungswert der Abweichung liegt nach realistischer Einschätzung des Gutachters also bei +1,0 %. Somit ist der Verlustansatz bei -1,0 %.

• Spannungsabfälle in der Verkabelung

Korrekturfaktor: -1,0 %

$$P_{Verl} = \Delta U_{Leiter} \cdot I = R_{Leiter} \cdot I^2 = \frac{\rho \cdot l \cdot I^2}{A_{Cu}}$$

Des Weiteren sind die ohmschen Verluste zu berücksichtigen. Der spezifische elektrische Widerstand eines Kupferleiters beträgt $0,0172~\Omega mm^2/m$ bei 20° C Umgebungstemperatur. Da der Widerstand mit steigender Temperatur zunimmt und die Betriebstemperatur bei Photovoltaikanlagen zum Teil über 70° C erreichen kann, ergibt sich unter Annahme einer durchschnittlichen Leitertemperatur von 50° C über den Temperaturbeiwert ein spezifischer Widerstand von $0,0193~\Omega mm^2/m$. Die Höhe des ohmschen Verlustes ist laut obiger Formel außerdem vom Strom abhängig. Eine schaltungsbezogene Berechnung des Verlustes erfolgt nach Angabe von Kabellänge, Querschnitt und Widerstand. Für die untersuchte PV-Anlage wurde ein für dieses Verschaltungskonzept üblicher Verlustansatz gewählt.

Verschmutzung:

Korrekturfaktor: -1,5 %

Schmutzablagerungen, zum Beispiel durch Staub, Ruß und Pollen beinträchtigen die Leistung des Generators. Der Umfang der Generatorverschmutzung wird dabei von mehreren Faktoren bestimmt. Neben klimatischen Einflüssen, wie Niederschlagsintensität und Häufigkeit, spielt die Luftverschmutzung und Staubbelastung in der unmittelbaren Anlagenumgebung - zum Beispiel durch Industrieanlagen oder Viehzucht - eine entscheidende Rolle. Die Oberflächenbeschaffenheit des Modulglases ist ein weiterer Einflussfaktor für die Bestimmung der Verschmutzungsverluste. In der maßgeblichen Fachliteratur (z.B. Volker Quaschning, Regenerative Energiesysteme, 5. Auflage, München, Carl Hanser Verlag, 2007) wird von Verlusten in Höhe von 2 bis 10 Prozent im deutschen Raum bei 30° Aufständerung ausgegeangen, während führende Anlagenerrichter wie die SolarWorld AG bereits ab 15° Modulneigung von einer ausreichenden Selbstreinigung sprechen. Quaschning geht weiterhin von einem starken Anstieg der Verluste bei Verringerung der Modulneigung aus. Eigene Untersuchungen über einen Zeitraum von zwei Monaten am Standort Ilmenau haben gezeigt (Juli, August, September 2009), dass die Verschmutzungsverluste bei einem um 4° geneigten Modul durchschnittlich 1,2 Prozent und bei einem um 31° aufgeständerten Modul 0,43 Prozent

betrugen. Auch wenn diese Messungen auf Grund von Toleranzen der Messgeräte und der kurzen Beobachtungsperiode unsicher sind, zeigen sie dennoch, dass Quaschnings Annahmen sehr restriktiv sind. Eine allgemeingültige und stichhaltige Aussage über das Ausmaß der Verschmutzungseffekte lässt sich auf Grund der vielen Einflussfaktoren bislang nicht treffen. Aufgrund der Einschätzungen bezüglich der Rahmenbedingungen des Anlagenstandortes wurde der Verschmutzungsverlust vom Gutachter mit oben angegebenem Wert festgelegt.

· Verschattung:

Korrekturfaktor: - 0,5 %

Weitere Verluste und Ertragseinbußen entstehen durch die bereits erwähnte Abschattung der Solarstrahlung. Daher muss die Verschattungssituation am Anlagenstandort bei der Konzeption von Photovoltaikanlagen berücksichtigt werden. Es wird allgemein zwischen direkter und diffuser Abschattung unterschieden. Direkte Abschattung beschreibt die Abschattung des direkten Sonnenlichtes durch Gebäude, Bäume und andere Objekte in der unmittelbaren Nähe der Anlage, wobei eine gewisse Lichtdurchlässigkeit bei Bäumen und Sträuchern berücksichtigt wird. Bei der diffusen Abschattung wird davon bestimmter Teil Hemisphäre ausgegangen, dass ein der auf Grund Abschattungsobjektes keinen Beitrag mehr zur diffusen Strahlung liefern kann. Unabhängig von der Verschattungssituation im unmittelbaren Umfeld, ist bei Anlagen, die aus mehreren aufgeständerten Modulreihen bestehen, zusätzlich darauf zu achten, dass die Verluste durch Reihenverschattung möglichst gering bleiben. Die Abschattungsverluste nehmen dabei mit der Erhöhung des Reihenabstandes ab, während gleichzeitig die Flächenausnutzung sinkt. In der Praxis muss daher ein sinnvolles wirtschaftliches Gleichgewicht beider Faktoren gefunden werden, dieses ist nicht zuletzt von den Strahlungsverhältnissen am jeweiligen Anlagenstandort abhängig. Der oben angenommene Verlustfaktor ist das Resultat aus der Abschätzung des Gutachters auf Grund von Erfahrungswerten und der vom Kunden übermittelten Verlustberechnung mittels der Software PVSOL.

• AC-Kabel- und Trafoverluste:

Korrekturfaktor: -1,0 %

Die Energieeinspeisung der Gesamtanlage erfolgt in das Mittelspannungsnetz des Energieversorgers. Die notwendige Umspannung führt zu weiteren Ertragsverlusten, die auf die Eisen- und Kupferverluste der Mittelspannungstransformatoren zurückzuführen sind. Das Simulationsprogramm gibt die Möglichkeit diese AC-seitigen Verluste Für die einzubeziehen. Trafoverluste wurde der **PVSyst** empfohlene von Standardverlustansatz gewählt. Für die untersuchte PV-Anlage wurde ein für das Verschaltungskonzept üblicher AC-Kabelverlustansatz von 0,5 % (unter STC) gewählt. Der oben angegebene Wert ist das Ergebnis der in PVSyst vorgenommenen Simulation.

• Albedo 20 %

Ein weiterer Einflussfaktor der Einstrahlung ist das Reflexionsvermögen der Umgebung, auch Albedo genannt. Bestimmte Untergründe, wie beispielsweise Schnee oder nasser Beton, reflektieren Strahlen besser als trockener Asphalt oder Sandflächen. Diese reflektierten Strahlungsanteile erhöhen die Gesamteinstrahlung auf den Generator. Im Jahresdurchschnitt wird für eine "Standardumgebung" in der Regel eine Albedo von 20 % angenommen. Der Strahlungsgewinn des Albedowertes ist sehr stark abhängig von der Generatorneigung und dem Standort. Bei einer Neigung von 45° ist beispielsweise am Standort Schmölln unter Berücksichtigung der Albedo mit 20 % mit einem Ertragszuwachs von ca. 2 % zu rechnen.

4.3. Wetterdaten am Standort

Für die Einbeziehung der Wetterdaten am Anlagenstandort Cobbel (Koordinaten: (52°24' nördliche Breite; 11°51' östliche Länge;44 ü. NN.) wurden die Einstrahlungswerte des Standortes Birkholz (Entfernung kleiner als 3 km) aus mehreren Quellen recherchiert und miteinander verglichen:

Quelle der Strahlungsdaten	Globalstrahlung in kWh/m²*a
DWD	1.024
Meteonorm	1.004
Satellight	1.034
PVGIS	1.091
Arithmetischer Mittelwert	1.038

Tabelle 6: Zusammenfassung Strahlungsdaten

Deutscher Wetterdienst

Der vom DWD bezogene Strahlungsdatensatz für den Standort Birkholz beinhaltet die Monatsmittelwerte für die Globalstrahlung auf die horizontale Fläche der dreißigjährigen Messperiode 1981-2010. Die Werte wurden durch Interpolation von Daten umliegender DWD-Bodenmessstationen sowie Satellitenmessdaten ermittelt.

Die anhand dieser Datenquelle ermittelte Jahressumme für die Globalstrahlung auf die horizontale Fläche beträgt 1.024 kWh/m²a.

METEONORM 6.0

METEONORM 6.0 ist ein Datenbank- und Simulationsprogramm des schweizerischen Meteotest-Instituts. In der Software sind Messdaten aus einem Netz von weltweit 7.400 Wetterstationen hinterlegt, zusätzlich stehen Satellitenmessdaten zur Verfügung. Für die Stationen in der Region des untersuchten Anlagenstandorts beträgt die Messperiode für die Strahlungsdaten 20 Jahre, Zeitraum 1981-2000. Neben den Solarstrahlungsdaten umfasst die Datenbank auch Werte zu Außentemperatur, Luftdruck, Windrichtung und –geschwindigkeit. Durch Interpolationsverfahren können aus diesen Messwerten Wetterdatensätze für jeden beliebigen weiteren Standort erzeugt werden.

METEONORM 6.0 bietet eine Importmöglichkeit für Wetterdaten anderer Quellen sowie verschiedene Berechnungsalgorithmen zur Weiterverarbeitung der Daten an. So können mit diesem Programm die Stundenwertdateien zur Ertragssimulation mit dem Programm PVSyst generiert oder reflektierte Strahlungsanteile zur Berechnung von Albedo-Werten ermittelt werden.

Der anhand dieser Datenquelle ermittelte Jahreswert für die Globalstrahlung auf die horizontale Fläche beträgt **1.004** $\frac{kWh}{m^2*a}$.

Satel-Light

Die Europäische Strahlungsdatenbank Satel-Light umfasst Messdaten des Wettersatelliten METEOSAT des Zeitraumes 1996-2000. Die Daten liegen in einer zeitlichen Auflösung von 30 Minuten vor, daraus abgeleitet sind bspw. Monatsmittelwerte abrufbar. Die räumliche Auflösung liegt bei 5 km für die Ost-West-Ausdehnung. Für die Nord-Süd-Ausdehnung ergibt sich technisch bedingt eine variable Rasterlänge zwischen 6 km bei 34° nördlicher Breite und 16 km bei 64° nördlicher Breite.

Die Übereinstimmung der Daten im Vergleich mit Bodenmessungen ist insgesamt recht hoch, wobei sich bei direkter Einstrahlung eine höhere Genauigkeit als bei bewölktem Himmel ergibt. Vorteilhaft ist die im Vergleich zu anderen Datenquellen höhere Aktualität der Daten, dem steht allerdings nachteilig die relativ kurze Messperiode von nur fünf Jahren gegenüber.

Der anhand dieser Datenquelle ermittelte Jahreswert für die Globalstrahlung auf die horizontale Fläche beträgt 1.034 kWh/m²a.

PVGIS

PVGIS ist ein von der Europäischen Union gefördertes interaktives Photovoltaik-Informationssystem im Internet, welches u.a. eine europäische Solarstrahlungsdatenbank beinhaltet. Die Datenbasis bilden Messwerte von Bodenstationen der Periode 1998-2010, regional erweitert durch Satellitendaten. Durch leistungsfähige Interpolationsverfahren werden daraus unter Berücksichtigung der geographischen Geländestruktur Globalstrahlungsdaten in einem Raster von 1x1 km ermittelt und zur Verfügung gestellt. Der anhand dieser Datenquelle ermittelte Jahreswert für die Globalstrahlung auf die horizontale Fläche beträgt 1.091 $\frac{kWh}{m^2*a}$.

Für die Ertragssimulation wurde der Mittelwert aller recherchierten Strahlungsquellen vom Standort Birkholz als Referenz verwendet.

Die Globalstrahlungssumme in Modulebene kann von PVSyst mit verschiedenen Strahlungsmodellen berechnet werden. Für die hier durchgeführten Simulationsrechnungen wurde das **anisotrope Modell nach Perez und Ineichen** ausgewählt, welches bei der Berechnung des diffusen Strahlungsanteils die Aufhellung des Himmels in der Nähe des Horizontes und in der Nähe der Sonne (circuumsolar) berücksichtigt. Es ergibt sich hier für den verwendeten Strahlungsdatensatz die **durchschnittliche Jahressumme** von $1.023\frac{kWh}{m^2*a}$, was einem Einstrahlungsgewinn von -1,4 % gegenüber dem Wert für die horizontale Fläche entspricht (vgl. Tabelle 1)

5. Simulationsergebnisse

5.1. Referenzrechnung mit PVSyst 5.74

Installierte PV-Nennleistung: 499,23 kWp

(Nach Datenblattangabe)

Jährlich eingespeiste Energie: 445,5 MWh

(auf Mittelspannungsebene)

Spezifischer Jahresertrag: 892 $\frac{kWh}{kWp*a}$

(Jährlich eingespeiste Energie / PV-Nennleistung)

Performance Ratio: 87,2 %

Die Performance Ratio gibt das Verhältnis des ideal möglichen Energieertrags bei STC, bedingt durch Anlagenstandort, Modulwirkungsgrad und Neigungswinkel, zum tatsächlich erzielten mittelspannungsseitigen Energieertrag an. Die Performance Ratio gibt somit eine Aussage zu allen Energieverlusten innerhalb der PV-Anlage, die nicht durch den STC-Wirkungsgrad der Module bestimmt werden.

5.2. Vergleichsrechnung mit greenius 3.6

Die durchgeführte Vergleichsrechnung erfolgte mit dem Simulationsprogramm greenius 3.6. Die Rahmenbedingungen (Verlustansätze) sind identisch.

Ertragssimu	ulation - greenius 3.0					
PV-Anlage Cobbel Dachanlage	α/°	β/°	P _{inst} / kWp	E _{out} / MWh/a	E _{spez} / kWh/kWp*a	
Nordwest	123	15	217,08	179,09	825	
Südost	-57	15	217,08	204,49	942	
Nordost	-145	15	32,13	24,48	762	
Südwest	35	15	32,94	33,10	1.005	
Gesamt			499,23	441,17	884	
Anlage: Simulation	Anlagentyp: Dachanlage dachparallel verwendetes Verschattungsmodell:Sicherheitsabschlag 0,5 % * verwendete Strahlungsdaten: Durchschnitt aller recherchierten Date ** Einstrahlungsmodell: nach Perez					

Spezifischer Jahresertrag: 884 $\frac{k}{kN}$

(Jährlich eingespeiste Energie mittelspannungsseitig/ PV-Nennleistung)

Abweichung zur Referenzrechnung: -0,9 %

Unter Berücksichtigung der bestehenden Unsicherheitsfaktoren bei der Ertragssimulation (siehe nächster Abschnitt) stimmt das Ergebnis der Vergleichsrechnung mit den oben aufgeführten Simulationsergebnissen sehr gut überein.

5.3. Bewertung der Ergebnisse/ Unsicherheitsanalyse

Die für die Simulation angenommenen Randbedingungen und die Berechnungsmodelle selbst sind mit Unsicherheiten behaftet, die nach den Regeln der Fehlerrechnung zu einer Gesamtunsicherheit des Simulationsergebnisses führen.

Für die durchgeführte Ertragsrechnung wurden im Einzelnen folgende Unsicherheitsfaktoren angenommen:

-	Globalstrahlungswert auf horizontale Fläche:	± 4,5 %
-	Umrechnung in die Modulebene:	± 3,5 %
-	Simulationsmodell PV-Modul:	± 1,5%
-	Simulationsmodell Wechselrichter:	± 1,5 %
-	Reflexionsverluste:	± 1,0 %
-	Verschmutzung:	± 0,5 %
-	Horizont- und Nahverschattung:	± 1,0 %
-	Missmatching:	± 1,0 %
-	Kabel- u. Trafoverluste:	± 1,5 %

Daraus ergibt sich eine Gesamtunsicherheit des Simulationsergebnisses in Höhe von \pm 6,5 % (einfache Standardabweichung), bzw. folgende Bandbreite für den Jahresertrag mittelspannungsseitig: 834...892...950 $\frac{kWh}{kWp*a}$. Bei Annahme einer Gauß'schen Normalverteilung beträgt die Unterschreitungswahrscheinlichkeit für die untere Grenze dieser Spanne 15,9 %.

Davon unabhängig können sich für das Einzeljahr entsprechend der auftretenden Witterungsverhältnisse Abweichungen vom dargestellten Ergebnis ergeben. Ausgehend von einem langjährigen Mittelwert sind Einstrahlungsabweichungen im Einzeljahr von ± 10 % für Standorte in Deutschland absolut normal.

Für das Gutachten wird von einer ständigen Verfügbarkeit der eingesetzten Komponenten ausgegangen. Eventuelle Ertragsausfälle, bspw. durch defekte Module oder Wechselrichter wurden nicht einkalkuliert. Im Rahmen der bestehenden Möglichkeiten wird dem Anlagenbetreiber empfohlen, dieses Risiko durch den Einsatz einer messtechnischen Anlagenüberwachung, Garantievereinbarungen mit den Herstellern und Abschluss einer geeigneten Versicherung zu minimieren. Beim Aufbau der Anlage ist auf eine sorgfältige Ausführung zu achten. Es wird empfohlen die Anlage jährlich zu reinigen.

5.4. Langzeitverhalten

Die oben angegebenen Simulationsergebnisse gelten für das erste Betriebsjahr der Anlage. Zur Beurteilung des Langzeitverhaltens kann eine jährliche Minderung der PV-Modulleistung im Anlagenbetrieb in Höhe von 0,25...0,4 % pro Jahr als realistischer Wert angesetzt werden.

6. Gewährleistung

Dieses Gutachten wurde nach bestem Wissen und Gewissen unter Verwendung der zugearbeiteten technischen Unterlagen mit größtmöglicher Sorgfalt erstellt. Der geplante Anlagenaufbau wurde vom Gutachter einer Plausibilitätsprüfung unterzogen. Die für die Ertragsrechnungen verwendeten Hilfsmittel befinden sich auf dem aktuellen Stand der Wissenschaft und Technik. Dennoch können Irrtümer oder Abweichungen nicht gänzlich ausgeschlossen werden. Hierfür wird von uns ausdrücklich keine Haftung übernommen. Gewährleistungen jeder Art sind ausgeschlossen.

An dieser Stelle wird ausdrücklich darauf hingewiesen, dass in dem vorliegenden Gutachten die Statik in keiner Weise betrachtet wurde. Eine Prüfung ist gegebenenfalls von einem Statikprüfer durchzuführen.

Dieses Gutachten umfasst 23 Seiten und 32 Seiten Anhang, unvollständige oder im Zusammenhang sinnesentstellende Veröffentlichungen oder Weitergabe der Ergebnisse darf nicht erfolgen.

7. Abkürzungsverzeichnis

7.1. Begrifflichkeiten

AC alternating current (Bezeichnung für Wechselstrom)

DC direct current (Bezeichnung für Gleichstrom)

EVA Ethylenvinylacetat (Schutzfolie der Solarmodule)

IEC International Electrotechnical Commission

(Normungsorganisation für Normen im Bereich der Elektrotechnik, Sitz in Genf)

METEOSAT meteorological satellite (geostatitionäre Wettersatelliten)

MPP maximum power point

(größtmögliche Leistung einer Solarzelle im Strom-Spannungsdiagramm)

STC Standard Test Conditions (geltende Standardtestbedingungen für Solar-module)

STC = f (Einstrahlung 1000 W/m²; Zelltemperatur: 25° C; Air Mass (AM)=1,5)

AM Air Mass

(Abhängigkeit des Solarstrahlungsspektrums von der Weglänge des Lichtes)

7.2. Einheiten

V Spanning in Volt; 1.000 V = 1 kV

Wp maximale Leistung eines Solarmoduls in Watt peak 1.000 Wp = 1 kWp

 $\frac{kWh}{m^2*a}$ Sonneneinstrahlung (Globalstrahlungswert) jährliche Kilowattstunde pro Quadratmeter

 $\frac{kWh}{kWp*a}$ spezifischer Ertrag

jährliche Kilowattstunden pro Kilowattpeak

 $\frac{MWh}{\text{jährlich eingespeiste Energie}} (1.000.000 \text{ Wh/a} = 1 \text{ MWh/a})$

<u>Ωmm²</u> spezifischer elektrischer Widerstand eines Leiters

Ohm mal Quadratmillimeter pro Meter

m ü. NN. Meter über Normalnull (Bezugsfläche für Höhen über dem Meeresspiegel)

8. Tabellenverzeichnis

Tabelle 1: Zusammenfassung der Ergebnisse	3
Tabelle 2: Beauftragung	. 4
Tabelle 3: Zusammenfassung Anlagentechnik Modul	. 5
Tabelle 4: Zusammenfassung Anlagentechnik Wechselrichter	5
Tabelle 5: Parameter für die Ertragsberechnung	10
Tabelle 6: Zusammenfassung Strahlungsdaten	15
9. Abbildungsverzeichnis Abbildung 1: Satellitenbild des Anlagenstandortes	8 9 9
10. Anhang: Simulationsprotokolle, Berechnungsgrundlagen	
Anhang A2: Technische Datenblätter	
Datenblatt 1. PV-Modul	

Datenblatt 2. Wechselrichter

Anhang A3: Simulationsprotokolle - PVSyst 5.74 und Greenius 3.6 -

Anhang A4: Strahlungsdaten Birkholz und Wetterdatenquelle Datenquelle 1. Deutscher Wetterdienst; Messperiode 1981 – 2010 Datenquelle 2. Meteornorm 6.1; Messperiode 1981 – 2000 Datenquelle 3. Satel-light; Messperiode 1996 – 2000 Datenquelle 4. PVGIS; Messperiode 1998 – 2010

-60/255-275/4BB F 35-35

MULTIKRISTALLINES SILIZIUMMODUL

Hauptmerkmale

Höherer Wirkungsgrad und verbesserte elektrische Eigenschaften durch Zellen von JA Solar mit 4-Busbar Design

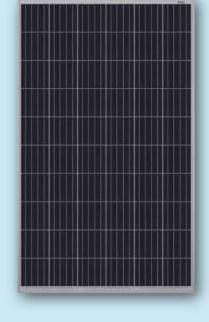
Hohe Ausgangsleistung, 16,51 % höchster Umwandlungswirkungsgrad

Für DC IEC 1000V Anwendungen konzipiert

Eine entspiegelte, schmutzabweisende Oberfläche verringert den Leistungsverlust durch Schmutz und Staub

Ausgezeichnete Leistung in Umgebung mit wenig Lichteinstrahlung

Ausgezeichnete mechanische Belastbarkeit: Zertifiziert für hohe Wind-(2400Pa) und Schneelasten (5400Pa)


Hohe Salz- und Ammoniakbeständigkeit, durch TÜV NORD bescheinigt

Zuverlässige Qualität

- Positive Leistungstoleranz: 0~+5W
- Eine 100%ige doppelte EL-Kontrolle stellt sicher, dass die Module frei von Fehlern sind
- Nach Strom klassifizierte Module zur Erhöhung der Anlagenleistung
- Resistent gegen potenzialinduzierte Degradation (PID)

Umfassende Zertifizierungen

- IEC 61215, IEC 61730, UL1703, CEC registriert, MCS und CE
- ISO 9001: 2008: Qualitätsmanagementsysteme
- ISO 14001: 2004: Umweltmanagementsysteme
- BS OHSAS 18001: 2007: Arbeitsschutzmanagementsysteme
- Wir sind das erste Solarunternehmen Chinas, dass die CO2-Evaluierung von Intertek erfolgreich absolviert hat und dessen Produkte mit dem Umweltprüfzeichen ausgezeichnet wurden.

JA Solar Holdings Co., Ltd.

JA Solar ist ein weltweit führender Hersteller von Photovoltaikprodukten, die Sonnenlicht in elektrische Energie umwandeln. Systeme mit Modulen von JA Solar können somit umweltschonenden Strom für Privathaushalte, Gewerbebetriebe Energieversorgungsunternehmen aus Erneuerbaren Energien erzeugen. Das Unternehmen wurde am 18. Mai 2005 gegründet und ist seit Februar 2007 an der NASDAQ notiert. JA Solar ist einer der weltweit größten Hersteller von Solarzellen und -Modulen. Sein Angebot an Standard- und hocheffizienten Produkten gehört zu den leistungsfähigsten und kostengünstigsten in der Branche.

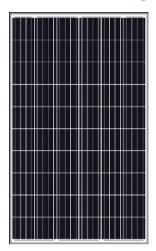

Adr.: Building No.8, Nuode Center, Automobile Museum East Road, Fengtai District, Beijing

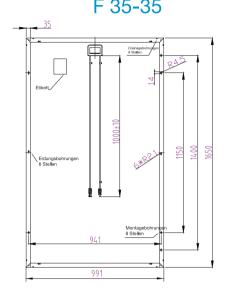
Tel.: +86 (10) 63611888 Fax: +86 (10) 63611999

E-Mail: sales@jasolar.com market@jasolar.com

Bessere Garantie

- 12-jährige Produktgarantie
- 25-jährige lineare Ausgangsleistungsgarantie





JAP6(K)-60/255-275/4BB

Technische Zeichnungen

MECHANISCHE PARAMETER

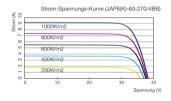
Zelle (mm)	Poly 156,75x156,75
Gewicht (kg)	18 (ca.)
Abmessungen (LxBxH) (mm)	1650×991×35
Kabelquerschnitt Größe (mm2)	4
Anzahl der Zellen und Anschlüsse	60 (6×10)
Anschlussdose	IP67, 3 Dioden
Steckverbinder	MC4-kompatibel
Verpackungsangaben	30 pro Palette

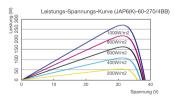
BEI	RIEBSBEDINGUNGEN

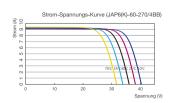
Max. Systemspannung	DC 1000V (IEC)
Betriebstemperatur	- 40°C~+85°C
Rückstrombelastbarkeit	15A
Max. statische Belastung, Vorderseite (z.B. durch Schnee und Wind) Max. statische Belastung, Rückseite (z.B. durch Schnee)	5400Pa (4,7 kg/m²) 2400Pa (2,1 kg/m²)
NOCT	45±2°C
Anwendungsklasse	Klasse A

ELEKTRISCHE PARAMETER

TYP	JAP6(K)- 60-255/4BB	JAP6(K)- 60-260/4BB	JAP6(K)- 60-265/4BB	JAP6(K)- 60-270/4BB	JAP6(K)- 60-275/4BB
Max. Nennleistung bei STC (W)	255	260	265	270	275
Leerlaufspannung (Uoc/V)	37,51	37,74	37,95	38,17	38,38
Spannung bei Nennleistung (Umpp/V)	30,49	30,71	30,92	31,13	31,34
Kurzschlussstrom (Isc/A)	8,93	9,04	9,11	9,18	9,29
Strom bei Maximalleistung (Imp/A)	8,36	8,47	8,57	8,67	8,77
Modulwirkungsgrad [%]	15,59	15,90	16,21	16,51	16,82
Leistungstoleranz (W)			- 0∼+5W		
Temperaturkoeffizient lsc (αlsc)			+0,058%/℃		
Temperaturkoeffizient Uoc (βUoc)			-0,330%/℃		
Temperaturkoeffizient Pmax (γPmpp)			-0,410%/℃		
STC	Einstrah	lung 1000W/m	² , Zelltemperat	ur 25°C, Luftma	asse 1,5


IADG(IZ)


IADE(IZ)


IADE(IZ)

IADE(IZ)

I-V-KURVE

NOCT

TYP	JAP6(K)- 60-255/4BB	JAP6(K)- 60-260/4BB	JAP6(K)- 60-265/4BB	JAP6(K)- 60-270/4BB	JAP6(K)- 60-275/4BB
Max. Nennleistung (Pmax) [W]	185,13	188,76	192,39	196,02	199,65
Leerlaufspannung (Uoc) [V]	34,44	34,60	34,84	35,15	35,46
Spannung bei Nennleistung (Umpp) [V] 27,85	28,07	28,29	28,49	28,68
Kurzschlussstrom (Isc) [A]	7,06	7,10	7,13	7,17	7,23
Strom bei Maximalleistung (Imp) [A]	6,65	6,72	6,80	6,88	6,96

Bedingungen

Bei normaler Betriebszelltemperatur, Einstrahlung von 800 W/m²,
Spektrum AM 1,5, Umgebungstemperatur 20°C, Windgeschwindigkeit 1 m/s

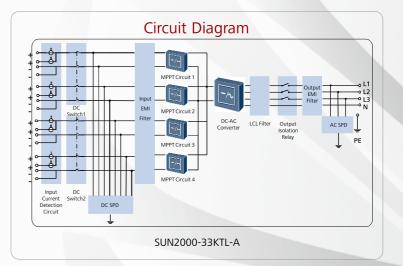
String Inverter (SUN2000-33KTL-A)

Smart

- 4 MPPTs for versatile adaptions to different layouts
- 8 strings intelligent monitoring and fast trouble-shooting
- Power Line Communication (PLC) supported
- Smart String I-V Diagnosis supported

Efficient

• Max. efficiency 98.6%, European efficiency 98.4%


Efficiency Curve 100% 99% 98% 98% 97% 95% 95% 95% 91% 92% 90% 20% 40% 60% 80% 100% Load [%]

Safe

- DC disconnect integrated, safe and convenient for maintenance
- Type II surge arresters for both DC and AC
- Ground fault protection
- Residual Current Detection (RCD) protection

Reliable

- No need for external fans with natural cooling technology
- Protection rating of IP65

String Inverter (SUN2000-33KTL-A)

Technical Specifications	SUN2000-33KTL-A
	Efficiency
Max. Efficiency	98.6%
European Efficiency	98.4%
	Input
Max. DC Usable Power	30,600 W
Max. Input Voltage	1100V
Max. Current per MPPT	22A
Max. Short Circuit Current per MPPT	30A
Min. Operating Voltage / Start Input Voltage	200 V / 250 V
Full Power MPPT Voltage Range	480 V ~ 800 V
MPPT Operating Voltage Range	200 V ~ 1000 V
Rated Input Voltage	620 V
Max. Number of Inputs	8
Number of MPP Trackers	4
	Output
Rated AC Active Power	30,000 W
Max. AC Apparent Power	33,000 VA
Max. AC Active Power (cosφ=1)	30,000W
Rated Output Voltage	230V / 400V, default 3W+N+PE;
Rated AC Grid Frequency	50 Hz / 60 Hz
Max. Output Current(@380V/400V/480V)	48 A
Adjustable Power Factor	0.8 LG 0.8 LD
Max. Total Harmonic Distortion	<3%
	Protection
Input-side Disconnection Device	Yes
Anti-Islanding Protection	Yes
DC Reverse-Polarity Protection	Yes
PV-array String Fault Monitoring	Yes
DC Surge Arrester	Type II
AC Surge Arrester	Type II
Insulation Monitoring	Yes
Residual Current Detection	Yes
	Communication
Display	LED Indicators
USB / Bluetooth +APP	Yes
RS485	Yes
PLC	Yes
	General
Dimensions (W×H×D)	930 × 550 × 260 mm (36.6 x 21.7 x 10.2 inches)
Weight	60 kg (132 lb.)
Operation Temperature Range	-25 °C ~ 60 °C (-13°F ~ 140°F)
Cooling	Natural Convection
Operating Altitude	4,000 m (13,123 ft.)
Relative Humidity	0~100%
DC Connector	Amphenol Helios H4
AC Connector	Waterproof PG Terminal + OT Connector
Protection Rating	IP65
Internal Consumption at Night	<1.5W
Topology	Transformerless
	Standards Compliance
Safety	EN/IEC 62109-1, EN/IEC 62109-2

PVSYST V5.74 25/04/18 Seite 1/4 IB-Jera Netz gekoppeltes System: Simulationsparameter Projekt: Cobbel **Geografische Station Birkholz** Land **Deutschland** Breitengrad 52.4°N Längengrad 11.8°E Lage Zeit definiert als Ortszeit Zeitzone UT+1 geo. Höhe 38 m Albedo 0.20 Wetterdaten: Birkholz, Meteonorm SYN File Simulationsvariante: **Nordost** Simulationsdatum 25/04/18 11h44 Simulationsparameter Kollektorflächenausrichtung 15° Azimut -145° Neigung Horizont Freier Horizont Nahverschattungen Keine Verschattungen PV-Felder Eigenschaften (3 definierte Feldtypen) **PV-Modul** Modell JAP6-60-270-4BB Si-poly Hersteller JA Solar Feld#1: Anzahl PV-Module In Reihe 18 Module Parallel 2 Stränge Gesamtzahl der PV-Module Anzahl Module Nennleistung 270 Wp 36 PV-Feld Leistung Bei Betriebsbed. 8.69 kWp (50°C) Nennleistung (STC) 9.72 kWp Feld Betriebsbedingungen (50°C) I mpp 17 A U mpp 499 V Anzahl PV-Module Parallel Feld#2: In Reihe 15 Module 4 Stränge Gesamtzahl der PV-Module Anzahl Module Nennleistung 270 Wp PV-Feld Leistung Nennleistung (STC) Bei Betriebsbed. 14.48 kWp (50°C) 16.20 kWp Feld Betriebsbedingungen (50°C) U mpp 416 V 35 A I mpp Feld#3: Anzahl PV-Module In Reihe 23 Module Parallel 1 Stränge Gesamtzahl der PV-Module Anzahl Module Nennleistung 270 Wp 23 PV-Feld Leistung Nennleistung (STC) Bei Betriebsbed. 5.55 kWp (50°C) 6.21 kWp Feld Betriebsbedingungen (50°C) U mpp 638 V I mpp 8.7 A PV-Felder Gesamtleistung Nennleistung (STC) Total 119 Module Total 32 kWp Moduloberfläche 195 m² Zelloberfläche 175 m² Wechselrichter Modell sun2000-33ktl Hersteller huawei 200-800 V Betriebsspannung Nennleistung 30.0 kW AC Feld#1: Anzahl der Wechselrichter 0.3 Gesamtleistung 10.0 kW AC Feld#2: Anzahl der Wechselrichter 0.7 Gesamtleistung 20.0 kW AC Feld#3: Anzahl der Wechselrichter 0.3 Gesamtleistung 10.0 kW AC **Total** Anzahl der Wechselrichter Gesamtleistung 40 kW AC PV-Feld Verlustgrößen Thermischer Verlustfaktor 20.0 W/m²K Uv (Wind) 1.5 W/m2K / m/s Uc (konst) => Effektive Funktionstemperatur (G=800 W/m², TUmg.=20°C, Windgesch.=1m/s.) NOCT 53 °C Kabelverluste 325 mOhm Verlustanteil 1.0 % bei STC Feld#1 Feld#2 136 mOhm Verlustanteil 1.0 % bei STC

Schmutz auf Kollektoren Verlustanteil 1.5 %

Feld#3

Global

835 mOhm

1.0 % bei STC

1.0 % bei STC

Verlustanteil

Verlustanteil

Netz gekoppeltes System: Simulationsparameter (weiter)

Leistungstolleranzabzug Verlustanteil -1.0 %

Mismatch-Verluste Module Verlustanteil 1.0 % am MPP

Einfallswinkeleffekt (ASHRAE) IAM = 1 - bo (1/cos i - 1) bo Parameter 0.05

Verlustfaktoren des Systems

AC Kabelverlust zwischen Wechselricht Manndete Tsraftonnung 400 Vac tri

Drähte 173 m 3x150 mm² Verlustanteil 0.5 % bei STC

Externer Transformator Verlust Eisen (Night disconnect) 32 W Verlustanteil 0.1 % bei STC

Widerstands-/Induktions-Verluste 50.6 mOhm Verlustanteil 1.0 % bei STC

Benutzeranforderungen : Unbegrenzte Last (Netz)

PVSYST V5.74 25/04/18 Seite 3/4 IB-Jera

Netz gekoppeltes System: Hauptergebnisse

Projekt: Cobbel Simulationsvariante: **Nordost**

Hauptsystemparameter PV-Feld-Ausrichtung **PV-Module**

PV-Feld Wechselrichter Wechselrichter Benutzeranforderungen Systemtyp Neigung Modell

Anzahl der Module Modell Anzahl der Einheiten Unbegrenzte Last (Netz)

Netz gekoppelt

15° JAP6-60-270-4BB 119

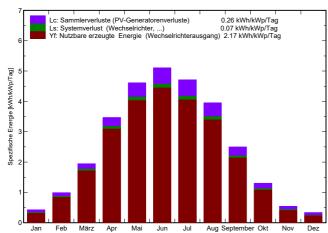
sun2000-33ktl

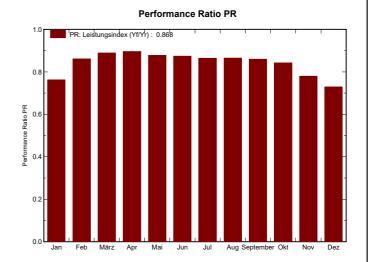
-145° Azimut Pnenn 270 Wp

Pnenn Total 32.1 kWp Pnenn 30.0 kW ac Pnenn Total 40.0 kW ac

Hauptsimulationsergebnisse

Systemproduktion


Erzeugte Energie


25.43 MWh/Jahr

Produzierbar 792 kWh/kWp/Jahr

Performance Ratio PR 86.8 %

Spezifischer Ertrag (pro installiertem kWp): Nennleistung 32.1 kWp

Nordost Bilanzen und Hauptergebnisse

	GlobHor	T Amb	Globinc	GlobEff	EArray	E_Grid	EffArrR	EffSysR
	kWh/m²	°C	kWh/m²	kWh/m²	MWh	MWh	%	%
Januar	20.1	0.65	13.2	11.6	0.351	0.323	13.68	12.60
Februar	36.3	1.29	27.7	25.4	0.804	0.768	14.89	14.22
März	75.1	4.09	60.3	56.1	1.783	1.724	15.19	14.69
April	118.1	8.81	104.1	98.7	3.085	2.998	15.23	14.80
Mai	154.6	13.79	142.9	136.3	4.146	4.032	14.91	14.50
Juni	161.2	16.04	153.2	146.8	4.426	4.305	14.85	14.44
Juli	154.6	18.44	146.1	139.9	4.174	4.058	14.68	14.27
August	134.6	18.08	122.5	116.6	3.504	3.406	14.70	14.29
September	90.7	14.46	75.0	70.1	2.140	2.073	14.66	14.20
Oktober	54.3	9.53	40.4	36.9	1.141	1.094	14.51	13.91
November	23.7	4.44	16.3	14.4	0.438	0.407	13.85	12.88
Dezember	16.2	1.31	10.5	9.2	0.270	0.245	13.27	12.05
Jahr	1039.4	9.29	912.3	862.0	26.262	25.434	14.79	14.33

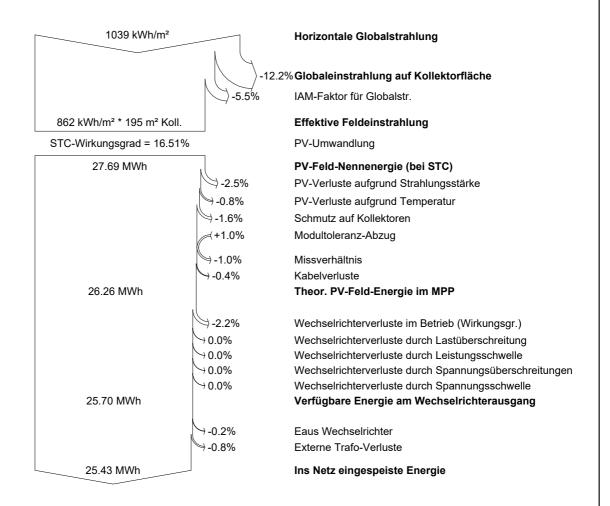
Legenden: GlobHor

Horizontale Globalstrahlung T Amb Umgebungstemperatur

GlobInc Globaleinstrahlung auf Kollektorfläche Effektive Globalstr. (IAM u. Verschattungen) GlobEff

EArray E_Grid **EffArrR** EffSysR Effektive Energie am PV-Feld-Ausgang Ins Netz eingespeiste Energie Wirkunsgr. Eaus PV-Gen./ Brutto-FI. Wirkunsgr. Eaus System./ Brutto-Fl.

Netz gekoppeltes System: Verlust-Diagramm


Projekt : Cobbel Simulationsvariante : Nordost

Hauptsystemparameter Systemtyp Netz gekoppelt

-145° PV-Feld-Ausrichtung Neigung 15° Azimut **PV-Module** Modell JAP6-60-270-4BB Pnenn 270 Wp Pnenn Total PV-Feld Anzahl der Module 119 32.1 kWp Wechselrichter Modell sun2000-33ktl 30.0 kW ac Pnenn Wechselrichter Anzahl der Einheiten Pnenn Total 40.0 kW ac

Benutzeranforderungen Unbegrenzte Last (Netz)

Ganzjahres-Verlustdiagramm

PVSYST V5.74		IB-Je	era		25/04/18	Seite 1/4			
	Netz gekoppeltes System: Simulationsparameter								
Projekt : Cobbel									
Geografische Statio	n	Birkholz		Land	Deutschland	k			
Lage Zeit definiert als		Albedo	Zeitzone UT+1 0.20	Längengrad geo. Höhe	11.8°E 38 m				
Wetterdaten :	Birkho	olz, Meteonorm SYN	l File						
Simulationsvariante : Nordwest									
		Simulationsdatum	25/04/18 11h43						
Simulationsparamet	er								
Kollektorflächenaus	richtung	Neigung	15°	Azimut	123°				
Horizont		Freier Horizont							
Nahverschattungen	K	eine Verschattungen							
PV-Felder Eigensch	aften (2 defin	ierte Feldtypen)							
PV-Modul		Si-poly Modell Hersteller	JAP6-60-270-4B JA Solar	ВВ					
Feld#1: Anzahl Pi Gesamtzahl der PV-M PV-Feld Leistung Feld Betriebsbedingu	Module	In Reihe Anzahl Module Nennleistung (STC) U mpp	22 Module 528 143 kWp 610 V	Parallel Nennleistung Bei Betriebsbed. I mpp	24 Stränge 270 Wp 127 kWp (50 209 A	°C)			
Feld#2: Anzahl P'Gesamtzahl der PV-NPV-Feld Leistung Feld Betriebsbedingu		In Reihe Anzahl Module Nennleistung (STC) U mpp	23 Module 276 74.5 kWp 638 V	Parallel Nennleistung Bei Betriebsbed. I mpp	12 Stränge 270 Wp 66.6 kWp (50 104 A)°C)			
Total PV-Felder G	Sesamtleistung	Nennleistung (STC) Moduloberfläche	217 kWp 1315 m²	Total Zelloberfläche	804 Module 1185 m²				
Wechselrichter		Modell Hersteller	sun2000-33ktl huawei						
		Betriebsspannung	200-800 V	Nennleistung	30.0 kW AC				
Feld#1: Feld#2:		ıl der Wechselrichter ıl der Wechselrichter	4.0 2	Gesamtleistung Gesamtleistung	120 kW AC 60 kW AC				
Total	Anzah	ıl der Wechselrichter	6	Gesamtleistung	180 kW AC				
PV-Feld Verlustgröß Thermischer Verlustfa => Effektive Funkti	aktor	Uc (konst) (G=800 W/m², TUmg	20.0 W/m²K .=20°C, Windgeso	Uv (Wind) ch.=1m/s.) NOCT	1.5 W/m²K / ı 53 °C	m/s			
Kabelverluste		Feld#1 Feld#2 Global	33 mOhm 70 mOhm	Verlustanteil Verlustanteil Verlustanteil	1.0 % bei ST 1.0 % bei ST 1.0 % bei ST	С			
Schmutz auf Kollektor Leistungstolleranzabz Mismatch-Verluste Mo Einfallswinkeleffekt (A	zug odule	IAM =	1 - bo (1/cos i - 1	Verlustanteil Verlustanteil Verlustanteil) bo Parameter	1.5 % -1.0 % 1.0 % am MF 0.05	рP			
Verlustfaktoren des	Systems								
AC Kabelverlust zwise		Drähte	400 Vac tri 26 m 3x150 mm ²	² Verlustanteil	0.5 % bei ST				

Externer Transformator Verlust Eisen (Night disconnect) 213 W
Widerstands-/Induktions-Verluste 7.5 mOhm Verlustanteil 0.1 % bei STC Verlustanteil 1.0 % bei STC.
Übersetzung ohne Garantie, nur der englische Text ist maßgeblich.

PVSYST V5.74	IB-Jera	25/04/18	Seite 2/4
	r)		
	•		
Benutzeranforde	rungen : Unbegrenzte Last (Netz)		

PVSYST V5.74 25/04/18 Seite 3/4 IB-Jera

Netz gekoppeltes System: Hauptergebnisse

Projekt: Cobbel Simulationsvariante: **Nordwest**

Hauptsystemparameter Systemtyp Netz gekoppelt PV-Feld-Ausrichtung Neigung 15°

PV-Module Modell PV-Feld Anzahl der Module Modell Wechselrichter Wechselrichter Anzahl der Einheiten

Benutzeranforderungen Unbegrenzte Last (Netz)

JAP6-60-270-4BB 804

sun2000-33ktl

6.0

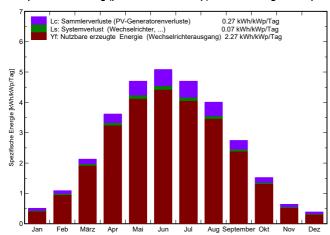
123° Azimut Pnenn

270 Wp Pnenn Total 217 kWp Pnenn 30.0 kW ac

Pnenn Total 180 kW ac

Hauptsimulationsergebnisse

Systemproduktion


Erzeugte Energie Performance Ratio PR

179.9 MWh/Jahr 87.2 %

Produzierbar

829 kWh/kWp/Jahr

Spezifischer Ertrag (pro installiertem kWp): Nennleistung 217 kWp

Performance Ratio PR PR: Leistungsindex (Yf/Yr): 0.872 0.4 0.2

Nordwest Bilanzen und Hauptergebnisse

	GlobHor	T Amb	Globinc	GlobEff	EArray	E_Grid	EffArrR	EffSysR
	kWh/m²	°C	kWh/m²	kWh/m²	MWh	MWh	%	%
Januar	20.1	0.65	15.8	14.2	2.94	2.79	14.15	13.41
Februar	36.3	1.29	30.5	28.2	6.05	5.85	15.09	14.58
März	75.1	4.09	66.1	62.0	13.31	12.94	15.33	14.90
April	118.1	8.81	108.6	103.4	21.73	21.17	15.22	14.83
Mai	154.6	13.79	145.7	139.4	28.52	27.78	14.89	14.50
Juni	161.2	16.04	152.6	146.2	29.61	28.83	14.76	14.37
Juli	154.6	18.44	145.8	139.6	28.04	27.30	14.63	14.24
August	134.6	18.08	124.4	118.6	23.95	23.33	14.65	14.27
September	90.7	14.46	82.5	77.9	15.99	15.57	14.74	14.35
Oktober	54.3	9.53	47.2	43.7	9.16	8.88	14.77	14.32
November	23.7	4.44	19.2	17.4	3.61	3.44	14.28	13.60
Dezember	16.2	1.31	12.1	10.8	2.20	2.06	13.78	12.94
Jahr	1039.4	9.29	950.6	901.5	185.11	179.94	14.81	14.40

Legenden: GlobHor T Amb

GlobInc

GlobEff

Horizontale Globalstrahlung

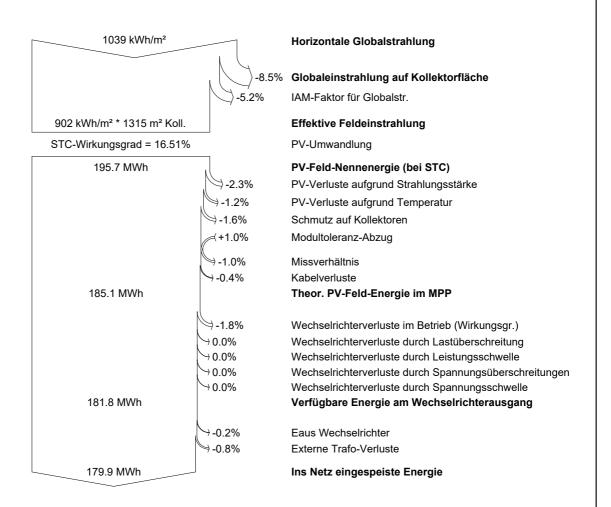
Umgebungstemperatur Globaleinstrahlung auf Kollektorfläche Effektive Globalstr. (IAM u. Verschattungen) **EArray** E_Grid **EffArrR**

EffSysR

Effektive Energie am PV-Feld-Ausgang Ins Netz eingespeiste Energie Wirkunsgr. Eaus PV-Gen./ Brutto-FI.

Wirkunsgr. Eaus System./ Brutto-FI.

Netz gekoppeltes System: Verlust-Diagramm


Projekt : Cobbel Simulationsvariante : Nordwest

Hauptsystemparameter Systemtyp Netz gekoppelt

123° PV-Feld-Ausrichtung Neigung 15° Azimut **PV-Module** Modell JAP6-60-270-4BB Pnenn 270 Wp Pnenn Total PV-Feld Anzahl der Module 804 217 kWp Wechselrichter Modell sun2000-33ktl 30.0 kW ac Pnenn Wechselrichter Anzahl der Einheiten 6.0 Pnenn Total 180 kW ac

Benutzeranforderungen Unbegrenzte Last (Netz)

Ganzjahres-Verlustdiagramm

PVSYST V5.74 25/04/18 Seite 1/4 IB-Jera Netz gekoppeltes System: Simulationsparameter Projekt: Cobbel **Geografische Station Birkholz** Land **Deutschland** Breitengrad 52.4°N Längengrad 11.8°E Lage Zeit definiert als Ortszeit Zeitzone UT+1 geo. Höhe 38 m Albedo 0.20 Wetterdaten: Birkholz, Meteonorm SYN File Simulationsvariante: Südost

25/04/18 11h41

Simulationsparameter

Kollektorflächenausrichtung Neigung 15° Azimut -57°

Simulationsdatum

Horizont Freier Horizont

Nahverschattungen Keine Verschattungen

PV-Felder Eigenschaften (2 definierte Feldtypen)

PV-Modul Si-poly Modell JAP6-60-270-4BB

Hersteller JA Solar

Feld#1:Anzahl PV-ModuleIn Reihe22 ModuleParallel24 SträngeGesamtzahl der PV-ModuleAnzahl Module528Nennleistung270 WpPV Feld LeistungNennleistung (STC)143 kWpRei Retriebshed127 kWp (50)

PV-Feld Leistung Nennleistung (STC) 143 kWp Bei Betriebsbed. 127 kWp (50°C)

Feld Betriebsbedingungen (50°C) U mpp 610 V I mpp 209 A

Feld#2:Anzahl PV-ModuleIn Reihe23 ModuleParallel12 SträngeGesamtzahl der PV-ModuleAnzahl Module276Nennleistung270 Wp

PV-Feld Leistung Nennleistung (STC) **74.5 kWp** Bei Betriebsbed. 66.6 kWp (50°C)

Feld Betriebsbedingungen (50°C) U mpp 638 V I mpp 104 A

Total PV-Felder Gesamtleistung Nennleistung (STC) **217 kWp** Total 804 Module

Moduloberfläche 1315 m² Zelloberfläche 1185 m²

Wechselrichter Modell sun2000-33ktl

Hersteller huawei

Betriebsspannung 200-800 V Nennleistung 30.0 kW AC

Feld#1:Anzahl der Wechselrichter4.0Gesamtleistung120 kW ACFeld#2:Anzahl der Wechselrichter2Gesamtleistung60 kW AC

Total Anzahl der Wechselrichter 6 Gesamtleistung 180 kW AC

PV-Feld Verlustgrößen

Thermischer Verlustfaktor Uc (konst) 20.0 W/m²K Uv (Wind) 1.5 W/m²K / m/s

=> Effektive Funktionstemperatur (G=800 W/m², TUmg.=20°C, Windgesch.=1m/s.) NOCT 53 °C

Kabelverluste Feld#1 33 mOhm Verlustanteil 1.0 % bei STC

Feld#2 69 mOhm Verlustanteil 1.0 % bei STC Global Verlustanteil 1.0 % bei STC

Veridotaliteii 1.0 70 bei C

Schmutz auf Kollektoren Verlustanteil 1.5 % Leistungstolleranzabzug Verlustanteil -1.0 %

Mismatch-Verluste Module Verlustanteil 1.0 % am MPP

Einfallswinkeleffekt (ASHRAE) IAM = 1 - bo (1/cos i - 1) bo Parameter 0.05

PVSYST V5.74		IB-Je	ra		25/04/18	Seite 2/4
	Netz ge	koppeltes System: S	imulationspara	meter (weit	er)	
Verlustfaktoren o AC Kabelverlust z		chselricht Alaundte Tspannung	400 Vac tri	V	0.5.0/ 5-: 05	
Externer Transfori	mator Verlu Widers	Drähte st Eisen (Night disconnect) stands-/Induktions-Verluste	26 m 3x150 mm ² 213 W 7.5 mOhm	Verlustanteil Verlustanteil Verlustanteil	0.1 % bei S	гс
	Widers	stands-/maaktions-ventaste	7.5 111011111	venusianten	1.0 % bel 0	
Benutzeranforde	rungen :	Unbegrenzte Last (Netz)				
			Ü	bersetzung ohne Garantie	, nur der englische Te	xt ist maßgeblich.

PVSYST V5.74 25/04/18 Seite 3/4 IB-Jera

Netz gekoppeltes System: Hauptergebnisse

Projekt: Cobbel Simulationsvariante: Südost

Hauptsystemparameter

PV-Feld-Ausrichtung **PV-Module** PV-Feld Wechselrichter

Benutzeranforderungen

Systemtyp Neigung Modell

Anzahl der Module Modell Anzahl der Einheiten

15° JAP6-60-270-4BB 804 sun2000-33ktl

Netz gekoppelt

-57° Azimut Pnenn 270 Wp Pnenn Total 217 kWp Pnenn 30.0 kW ac

6.0

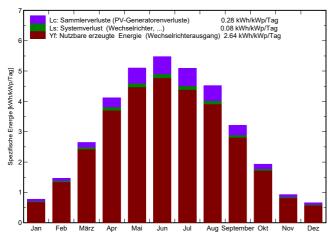
Pnenn Total 180 kW ac

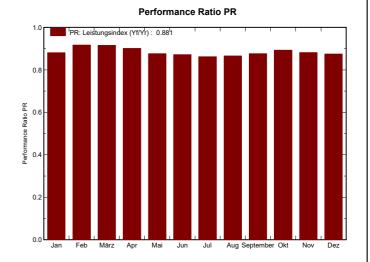
Hauptsimulationsergebnisse

Systemproduktion

Wechselrichter

Erzeugte Energie Performance Ratio PR


Unbegrenzte Last (Netz)


209.5 MWh/Jahr

Produzierbar 965 kWh/kWp/Jahr

88.1 %

Spezifischer Ertrag (pro installiertem kWp): Nennleistung 217 kWp

Südost Bilanzen und Hauptergebnisse

	GlobHor	T Amb	Globinc	GlobEff	EArray	E_Grid	EffArrR	EffSysR
	kWh/m²	°C	kWh/m²	kWh/m²	MWh	MWh	%	%
Januar	20.1	0.65	24.1	22.4	4.78	4.61	15.12	14.55
Februar	36.3	1.29	41.1	39.0	8.43	8.18	15.61	15.14
März	75.1	4.09	82.1	78.4	16.78	16.32	15.54	15.12
April	118.1	8.81	123.6	118.7	24.84	24.18	15.29	14.89
Mai	154.6	13.79	158.2	152.4	30.93	30.11	14.87	14.48
Juni	161.2	16.04	164.4	158.5	31.97	31.11	14.80	14.40
Juli	154.6	18.44	157.9	152.3	30.37 29.55		14.63	14.23
August	134.6	18.08	140.1	134.8	27.05	26.33	14.69	14.30
September	90.7	14.46	96.3	92.0	18.81	18.31	14.87	14.47
Oktober	54.3	9.53	59.9	56.7	11.95	11.61	15.17	14.75
November	23.7	4.44	27.8	26.1	5.52	5.32	15.11	14.56
Dezember	16.2	1.31	20.5	19.1	4.04	3.88	15.02	14.44
Jahr	1039.4	9.29	1095.8	1050.3	215.49	209.53	14.96	14.54

Legenden: GlobHor T Amb

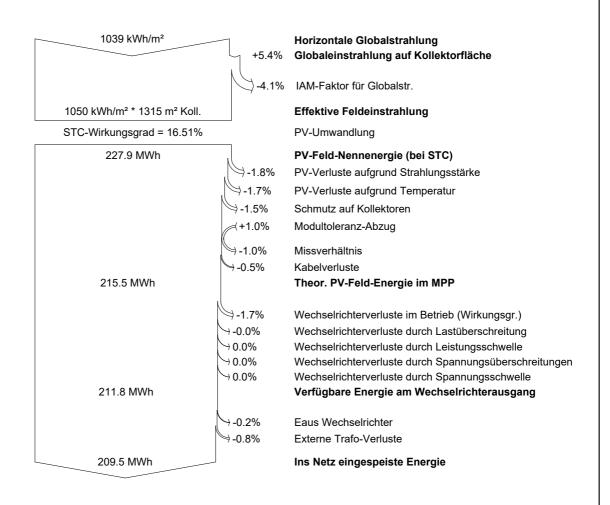
Horizontale Globalstrahlung Umgebungstemperatur

GlobInc Globaleinstrahlung auf Kollektorfläche Effektive Globalstr. (IAM u. Verschattungen) GlobEff

EArray E_Grid **EffArrR EffSysR** Effektive Energie am PV-Feld-Ausgang Ins Netz eingespeiste Energie Wirkunsgr. Eaus PV-Gen./ Brutto-FI.

Wirkunsgr. Eaus System./ Brutto-FI.

Netz gekoppeltes System: Verlust-Diagramm


Projekt : Cobbel Simulationsvariante : Südost

Hauptsystemparameter Systemtyp Netz gekoppelt

-57° PV-Feld-Ausrichtung Neigung 15° Azimut **PV-Module** Modell JAP6-60-270-4BB Pnenn 270 Wp Pnenn Total PV-Feld Anzahl der Module 804 217 kWp Wechselrichter Modell sun2000-33ktl 30.0 kW ac Pnenn Wechselrichter Anzahl der Einheiten 6.0 Pnenn Total 180 kW ac

Benutzeranforderungen Unbegrenzte Last (Netz)

Ganzjahres-Verlustdiagramm

25/04/18 PVSYST V5.74 IB-Jera Seite 1/4 Netz gekoppeltes System: Simulationsparameter Projekt: Cobbel **Geografische Station Birkholz** Land **Deutschland** Breitengrad 52.4°N Längengrad 11.8°E Lage Zeit definiert als Ortszeit Zeitzone UT+1 geo. Höhe 38 m Albedo 0.20 Birkholz, Meteonorm SYN File Wetterdaten: Simulationsvariante: SüdWest Simulationsdatum 25/04/18 11h45 Simulationsparameter Kollektorflächenausrichtung Neigung 15° Azimut 35° Horizont Freier Horizont Nahverschattungen Keine Verschattungen PV-Felder Eigenschaften (2 definierte Feldtypen) **PV-Modul** Modell JAP6-60-270-4BB Si-poly Hersteller JA Solar Feld#1: Anzahl PV-Module In Reihe 20 Module Parallel 4 Stränge Gesamtzahl der PV-Module Anzahl Module Nennleistung 80 270 Wp PV-Feld Leistung Bei Betriebsbed. 19.31 kWp (50°C) Nennleistung (STC) 21.60 kWp Feld Betriebsbedingungen (50°C) 35 A U mpp 555 V I mpp Anzahl PV-Module Feld#2: In Reihe 21 Module Parallel 2 Stränge Gesamtzahl der PV-Module Anzahl Module 42 Nennleistung 270 Wp PV-Feld Leistung Bei Betriebsbed. 10.14 kWp (50°C) Nennleistung (STC) 11.34 kWp Feld Betriebsbedingungen (50°C) 17 A U mpp 583 V I mpp Total PV-Felder Gesamtleistung Nennleistung (STC) 33 kWp Total 122 Module Moduloberfläche Zelloberfläche 180 m² 199 m² Wechselrichter Modell sun2000-33ktl Hersteller huawei Betriebsspannung 200-800 V Nennleistung 30.0 kW AC Feld#1: Anzahl der Wechselrichter 0.7 Gesamtleistung 20.0 kW AC Feld#2: Anzahl der Wechselrichter 0.3 Gesamtleistung 10.0 kW AC Anzahl der Wechselrichter 1 30 kW AC **Total** Gesamtleistung PV-Feld Verlustgrößen Thermischer Verlustfaktor Uc (konst) 20.0 W/m²K Uv (Wind) 1.5 W/m2K / m/s => Effektive Funktionstemperatur (G=800 W/m², TUmg.=20°C, Windgesch.=1m/s.) NOCT 53 °C Kabelverluste Feld#1 181 mOhm Verlustanteil 1.0 % bei STC Feld#2 Verlustanteil 1.0 % bei STC 378 mOhm Global Verlustanteil 1.0 % bei STC 1.5 % Schmutz auf Kollektoren Verlustanteil -1.0 % Leistungstolleranzabzug Verlustanteil Mismatch-Verluste Module 1.0 % am MPP Verlustanteil bo Parameter Einfallswinkeleffekt (ASHRAE) IAM = 1 - bo (1/cos i - 1)0.05Verlustfaktoren des Systems AC Kabelverlust zwischen Wechselrichte/raundtbeitsraftennung 400 Vac tri

Externer Transformator Verlust Eisen (Night disconnect) 32 W Verlustanteil 0.1 % bei STC Widerstands-/Induktions-Verluste 49.4 mOhm Verlustanteil 1.0 % bei STC

Drähte

168 m 3x150.0 mm² Verlustanteil 0.5 % bei STC

PVSYST V5.74	IB-Jera	25/04/18	Seite 2/4
	Netz gekoppeltes System: Simulationsparameter (weiter	r)	
		•	
Benutzeranforde	rungen : Unbegrenzte Last (Netz)		

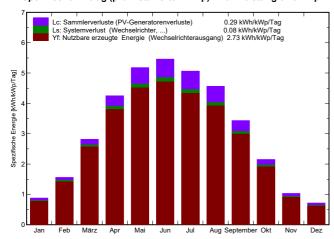
PVSYST V5.74 | IB-Jera | 25/04/18 | Seite 3/4

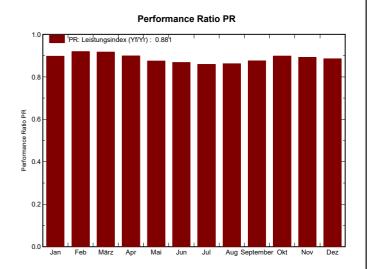
Netz gekoppeltes System: Hauptergebnisse

Projekt : Cobbel Simulationsvariante : SüdWest

Hauptsystemparameter Systemtyp Netz gekoppelt

PV-Feld-Ausrichtung Neigung 35° 15° Azimut **PV-Module** Modell JAP6-60-270-4BB Pnenn 270 Wp PV-Feld Anzahl der Module 122 Pnenn Total 32.9 kWp Wechselrichter Modell sun2000-33ktl Pnenn 30.0 kW ac


Benutzeranforderungen Unbegrenzte Last (Netz)


Hauptsimulationsergebnisse

Systemproduktion Erzeugte Energie 32.84 MWh/Jahr Produzierbar 997 kWh/kWp/Jahr

Performance Ratio PR 88.1 %

Spezifischer Ertrag (pro installiertem kWp): Nennleistung 32.9 kWp

SüdWest Bilanzen und Hauptergebnisse

	GlobHor	T Amb	Globinc	GlobEff	EArray	E_Grid	EffArrR	EffSysR
	kWh/m²	°C	kWh/m²	kWh/m²	MWh	MWh	%	%
Januar	20.1	0.65	27.3	25.8	0.838	0.808	15.37	14.83
Februar	36.3	1.29	43.8	41.7	1.367	1.326	15.64	15.18
März	75.1	4.09	87.3	83.6	2.712	2.639	15.57	15.15
April	118.1	8.81	127.5	122.7	3.881	3.778	15.26	14.85
Mai	154.6	13.79	160.5	154.7	4.756	4.628	14.85	14.45
Juni	161.2	16.04	163.8	157.9	4.814	4.683	14.73	14.33
Juli	154.6	18.44	157.1	151.3	4.570	4.446	14.58	14.19
August	134.6	18.08	141.6	136.2	4.134	4.023	14.64	14.24
September	90.7	14.46	103.1	99.0	3.055	2.973	14.86	14.46
Oktober	54.3	9.53	66.7	63.6	2.031	1.974	15.27	14.84
November	23.7	4.44	31.1	29.3	0.946	0.912	15.27	14.73
Dezember	16.2	1.31	22.2	20.9	0.674	0.648	15.20	14.62
Jahr	1039.4	9.29	1132.0	1086.7	33.777	32.838	14.96	14.54

Legenden: GlobHor

GlobEff

Horizontale Globalstrahlung

T Amb Umgebungstemperatur
GlobInc Globaleinstrahlung auf Kollektorfläche

Effektive Globalstr. (IAM u. Verschattungen)

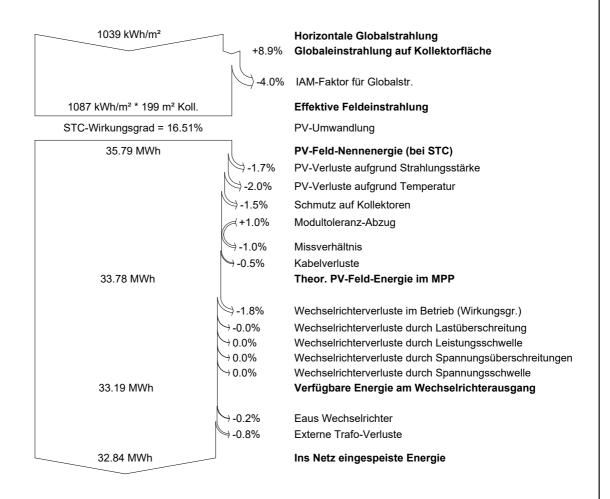
EArray E_Grid EffArrR

EffSysR

Effektive Energie am PV-Feld-Ausgang Ins Netz eingespeiste Energie

Wirkunsgr. Eaus PV-Gen./ Brutto-Fl. Wirkunsgr. Eaus System./ Brutto-Fl.

Netz gekoppeltes System: Verlust-Diagramm


Projekt : Cobbel Simulationsvariante : SüdWest

Hauptsystemparameter Systemtyp Netz gekoppelt

35° PV-Feld-Ausrichtung Neigung 15° Azimut **PV-Module** Modell JAP6-60-270-4BB Pnenn 270 Wp PV-Feld Anzahl der Module 122 Pnenn Total 32.9 kWp Wechselrichter Modell sun2000-33ktl Pnenn 30.0 kW ac

Benutzeranforderungen Unbegrenzte Last (Netz)

Ganzjahres-Verlustdiagramm

Meteorologische Daten:		NordOst
Globale Horizontalstrahlung (GHI)	1039,4	kWh/(m²·a)
Diffuse Horizontalstrahlung (Diff)	564,6	kWh/(m²·a)
Direkte Horizontalstrahlung (DHI)	474,8	kWh/(m²·a)
Einstrahlung in Modulebene	888,5	kWh/(m²·a)
jahresmittlere Umgebungstemperatur	9,3	°C
Diffusstrahlungsmodell	Perez	
Standort und Ausrichtung:		
Standort	Standard	
Breitengrad	52,414	°N
Längengrad	11,843	°O
Feste Installation (keine Nachführung)		
Azimutwinkel	-145	0
Elevationswinkel	15	0
Photovoltaik-Systemauslegung:		
Nenn-Gleichspannung	32,4	kWp
Nenn-Wechselspannung	32,0112	kVA
Module:	JA-270-JAP6-4B	
Zahl der Module	120	
Wechselrichter:	HUAWEI SUN20	
Zahl der Wechselrichter	1	
Gesamt-Modulfläche	196,218	m²
Simulationergebnisse:		
Elektrizitätsabgabe	24697,2	kWh/a
mittlerer Systemwirkungsgrad	14,2	%
mittlerer Modulwirkungsgrad	14,6	
mittlerer Wechselrichterwirkungsgrad	98,3	%
jährlicher Leistungsfaktor (PR)	0,86	
jährlicher spezifischer Ertrag (YF)	762,3	kWh/kWp
Volllaststunden	762	h/a

Meteorologische Daten:		NordWest
Globale Horizontalstrahlung (GHI)	1039,4	kWh/(m²·a)
Diffuse Horizontalstrahlung (Diff)	564,6	kWh/(m²·a)
Direkte Horizontalstrahlung (DHI)	474,8	kWh/(m²·a)
Einstrahlung in Modulebene	961,7	kWh/(m²·a)
jahresmittlere Umgebungstemperatur	9,3	°C
Diffusstrahlungsmodell	Perez	
Standort und Ausrichtung:		
Standort	Standard	
Breitengrad	52,414	°N
Längengrad	11,843	°O
Feste Installation (keine Nachführung)		
Azimutwinkel	123	0
Elevationswinkel	15	0
Photovoltaik-Systemauslegung:		
Nenn-Gleichspannung	213,84	kWp
Nenn-Wechselspannung	211,27392	kVA
Module:	JA-270-JAP6-4B	
Zahl der Module	792	
Wechselrichter:	HUAWEI SUN20	
Zahl der Wechselrichter	6	
Gesamt-Modulfläche	1295,0388	m²
Simulationergebnisse:		
Elektrizitätsabgabe	176411,3	kWh/a
mittlerer Systemwirkungsgrad	14,2	%
mittlerer Modulwirkungsgrad	14,6	
mittlerer Wechselrichterwirkungsgrad	98,4	%
jährlicher Leistungsfaktor (PR)	0,86	
jährlicher spezifischer Ertrag (YF)	825	kWh/kWp
Volllaststunden	825	h/a

Meteorologische Daten:		Südost
Globale Horizontalstrahlung (GHI)	1039,4	kWh/(m²·a)
Diffuse Horizontalstrahlung (Diff)	564,6	kWh/(m²·a)
Direkte Horizontalstrahlung (DHI)	474,8	kWh/(m²·a)
Einstrahlung in Modulebene	1088,2	kWh/(m²·a)
jahresmittlere Umgebungstemperatur	9,3	°C
Diffusstrahlungsmodell	Perez	
Standort und Ausrichtung:		
Standort	Standard	
Breitengrad	52,414	°N
Längengrad	11,843	°O
Feste Installation (keine Nachführung)		
Azimutwinkel	-57	0
Elevationswinkel	15	0
Photovoltaik-Systemauslegung:		
Nenn-Gleichspannung	213,84	kWp
Nenn-Wechselspannung	211,27392	kVA
Module:	JA-270-JAP6-4B	
Zahl der Module	792	
Wechselrichter:	HUAWEI SUN20	
Zahl der Wechselrichter	6	
Gesamt-Modulfläche	1295,0388	m²
Simulationergebnisse:		
Elektrizitätsabgabe	201472,4	kWh/a
mittlerer Systemwirkungsgrad	14,3	%
mittlerer Modulwirkungsgrad	14,7	%
mittlerer Wechselrichterwirkungsgrad	98,5	%
jährlicher Leistungsfaktor (PR)	0,87	
jährlicher spezifischer Ertrag (YF)	942,2	kWh/kWp
Volllaststunden	942	h/a

Meteorologische Daten:		SüdWest
Globale Horizontalstrahlung (GHI)	1039,4	kWh/(m²·a)
Diffuse Horizontalstrahlung (Diff)	564,6	kWh/(m²·a)
Direkte Horizontalstrahlung (DHI)	474,8	kWh/(m²·a)
Einstrahlung in Modulebene	1160,2	kWh/(m²·a)
jahresmittlere Umgebungstemperatur	9,3	°C
Diffusstrahlungsmodell	Perez	
Standort und Ausrichtung:		
Standort	Standard	
Breitengrad	52,414	°N
Längengrad	11,843	°O
Feste Installation (keine Nachführung)		
Azimutwinkel	35	0
Elevationswinkel	15	0
Photovoltaik-Systemauslegung:		
Nenn-Gleichspannung	32,4	kWp
Nenn-Wechselspannung	32,0112	kVA
Module:	JA-270-JAP6-4B	
Zahl der Module	120	
Wechselrichter:	HUAWEI SUN20	
Zahl der Wechselrichter	1	
Gesamt-Modulfläche	196,218	m²
Simulationergebnisse:		
Elektrizitätsabgabe	32545	kWh/a
mittlerer Systemwirkungsgrad	14,3	%
mittlerer Modulwirkungsgrad	14,7	%
mittlerer Wechselrichterwirkungsgrad	98,5	%
jährlicher Leistungsfaktor (PR)	0,87	
jährlicher spezifischer Ertrag (YF)	1004,5	kWh/kWp
Volllaststunden	1004	h/a

Deutscher Wetterdienst Klima- und Umweltberatung

Mittlere monatl. Tagessummen der Globalstrahlung auf eine horizontale Ebene bezogen - vorläufige Werte

Standort : (geogr. Breite 52,414 / geogr. Länge 11,843)

© Deutscher Wetterdienst, 2018 Auswertung erstellt am 12.4.2018

•								
			Meteonorm	PVGIS	SIIS	Satel	Satellight	Durchschnitt
	1981-2010					1996 -	1996 - 2000	
	Mittlere monatliche Tagessumme in Wh/m²	umme in Wh/m²				durchschn. Tageswert in Wh/m²	durchschn. Tageswert durchschn. Monatswert in Wh/m²	
Januar	647	20	19	615	19	741	23	07
Februar	1285	36	35	1280	36	1.313	37	36
März	2279	71	72	2700	84	2.320	72	75
April	3834	115	110	4310	129	3.876	116	118
Mai	4946	153	151	2500	161	5.001	155	155
Juni	5241	157	158	2700	171	5.297	159	161
Juli	5082	158	154	5270	163	4.698	146	155
August	4323	134	133	4380	136	4.415	137	135
September	2976	68	88	3170	98	3.076	92	16
Oktober	1724	53	52	1850	22	1.695	53	54
November	759	23	22	062	24	006	27	24
Dezember	472	15	14	493	15	589	18	16
	Jahressumme in kWh/m²	Wh/m²				2.827	1.034	
Jahr	1024		1008		1001			1039

WESTE-SOLAR

Mittlere monatl. Tagessummen der Globalstrahlung auf eine horizontale Ebene bezogen - vorläufige Werte

Ausgewählte Standortkoordinaten

Standort : (geogr. Breite 52,414 / geogr. Länge 11,843)

Auswertung erstellt am 12.4.2018

Kontakt

www.dwd.de/WESTE

© Deutscher Wetterdienst, 2018

Deutscher Wetterdienst

Klima- und Umweltberatung

Mittlere monatl. Tagessummen der Globalstrahlung

auf eine horizontale Ebene bezogen - vorläufige Werte

Standort : (geogr. Breite 52,414 / geogr. Länge 11,843)

© Deutscher Wetterdienst, 2018 Auswertung erstellt am 12.4.2018

	1981-2010
	Mittlere monatliche Tagessumme in Wh/m²
Januar	647
Februar	1285
März	2279
April	3834
Mai	4946
Juni	5241
Juli	5082
August	4323
September	2976
Oktober	1724
November	759
Dezember	472
	Jahressumme in kWh/m²
Jahr	1024

Standortname = Birkholz

Geogr. Breite [°] = 52,414, Geogr. Länge [°] = 11,843, Höhe [m] = 38, Klimaregion = III, 3

Strahlungsmodell = Standard (Stunde); Temperaturmodell = Standard (Stunde)

Modell für geneigte Flächen = Perez

Temperatur: Neue Periode = 1996-2005

Strahlung: Neue Periode = 1981-2000

RR: Nur 3 Station(en) für Interpolation

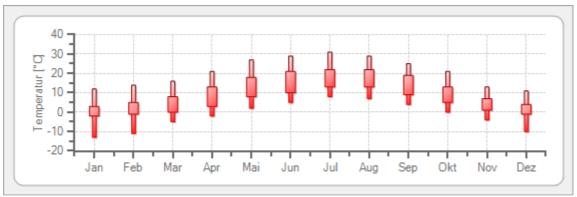
SD: Nur 4 Station(en) für Interpolation

RD: Nur 4 Station(en) für Interpolation

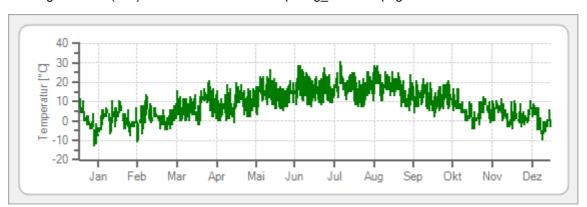
Nächste 3 Stationen: Gh: Potsdam (83 km), Braunschweig (96 km), Halle / Saale, Ger (100 km)

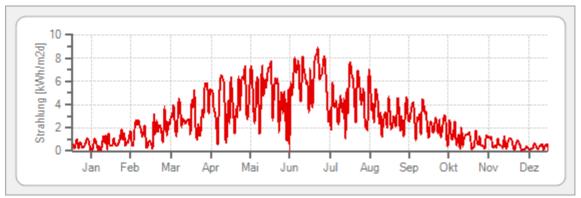
Nächste 3 Stationen: Ta: Wiesenberg (AUT) (54 km), CELLE (GER-ARMY) (126 km), HOLZDORF (117 km)

Monat	H_Gh	H_Dh	H_Bn	Та
	[kWh/m2]	[kWh/m2]	[kWh/m2]	[C]
Jan	19	12	33	0,6
Feb	35	21	45	1,4
Mar	72	46	59	4,0
Apr	110	55	102	8,9
Mai	151	81	117	13,6
Jun	158	87	117	16,3
Jul	154	82	118	18,3
Aug	133	70	111	18,1
Sep	88	53	75	14,5
Okt	52	33	51	9,5
Nov	22	15	29	4,6
Dez	14	10	18	1,2
Jahr	1004	566	874	9,2


Legende:

Strahlungss. der Globalstrahlung horiz. H Gh: H Dh: Strahlungssumme der Diffusstrahlung horiz. H_Bn: Strahlungssumme der Direktnormalstrahlung


Ta: Lufttemperatur


C:\Program Files (x86)\Common Files\mn61\output\Fig_ghdh1.png

C:\Program Files (x86)\Common Files\mn61\output\fig_tamima1.png

C:\Program Files (x86)\Common Files\mn61\output\fig_tadaily1.png

C:\Program Files (x86)\Common Files\mn61\output\fig_ghdaily1.png

S@tel-Light Your Site Outdoor Information

Created: 04/11/2018 19:56 - Copyright Satel-Light

The information presented in this document is based on Meteosat Satellite images obtained every half hour - See our <u>advanced guide</u> for more information.

Report problems to the <u>Satel-Light WebMaster</u>.

S@tel-Light

Lat: 52°24'50"N **Lon:** 11°50'34"E **Alt:** 37 m **Clock Time:** GMT+1 (Summer: GMT+2)

From: Sunrise To: Sunset Using: Clock Time Years: 1996 to 2000

📕 Jan 📕 Feb 📕 Mar 📕 Apr 📕 May 📕 Jun 📕 Jul 📕 Aug 📕 Sep 📕 Oct 📕 Nov 📕 Dec 💥 All Months

Warning!, this section of the server is still in development!

During that time, it produces a file containing half hour

values of all the parameters you requested.

Download your parameter information file (755 k)

This file has been compressed using the ZIP format. To uncompress it, use WinZip (Windows), PKZIP (Windows, Unix) or ZipIt (MacOS).

S@tel-Light Lat: 52°24'50"N Lon: 11°50'34"E Alt: 37 m

From: Sunrise To: Sunset Using: Clock Time Years: 1996 to 2000

Information: Percentage of Known, Derived, Missing and Night data (%)

1													
	Jan.	Feb.	Mar.	Apr.	May	Jun.	Jul.	Aug.	Sep.	Oct.	Nov.	Dec.	Total
Known	78	84	87	82	78	76	78	82	86	84	79	75	81
Derived	22	16	13	18	22	24	22	18	14	15	21	25	19
Missing	0	0	0	0	0	0	0	0	0	1	1	0	О
Night	0	0	0	0	0	0	0	0	0	0	0	0	0

S@tel-Light Lat: 52°24'50"N **Lon:** 11°50'34"E **Alt:** 37 m

From: Sunrise To: Sunset Using: Clock Time Years: 1996 to 2000

Parameter: Global Horizontal Irradiance

Information: Monthly Mean of daily sums (Wh/m2)

Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec. Total Mean 741 1313 2320 3876 5001 5297 4698 4415 3076 1695 900 589 2834

Photovoltaic Geographical Information System

Incident global irradiation for the chosen location

Location: 52°24'50" North, 11°50'34" East, Elevation: 39 m a.s.l.,

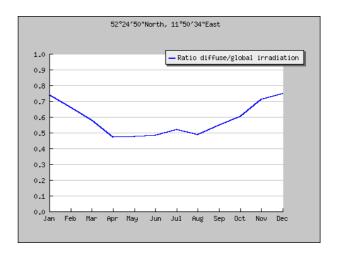
Optimal inclination angle is: 37 degrees

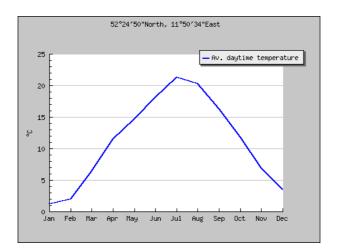
Annual irradiation deficit due to shadowing (horizontal): 0.0 %

Month	Hh	DNI	D/G	TD
Jan	615	731	0.74	1.2
Feb	1280	1380	0.66	2.0
Mar	2700	2580	0.58	6.4
Apr	4310	4190	0.47	11.5
May	5200	4480	0.47	14.7
Jun	5700	4680	0.48	18.1
Jul	5270	4060	0.52	21.3
Aug	4380	3880	0.49	20.3
Sep	3170	2970	0.55	16.3
Oct	1850	2000	0.61	11.8
Nov	790	914	0.71	6.9
Dec	493	639	0.75	3.5
Year	2990	2710	0.53	11.2

Hh: Irradiation on horizontal plane (Wh/m2/day)

DNI: Direct normal irradiation (Wh/m2/day)


D/G: Ratio of diffuse to global irradiation (-)


TD: Average daytime temperature (°C)

Photovoltaic Geographical Information System

PVGIS (c) European Communities, 2001-2012 Reproduction is authorised, provided the source is acknowledged. http://re.jrc.ec.europa.eu/pvgis/

Disclaimer:

The European Commission maintains this website to enhance public access to information about its initiatives and European Union policies in general. However the Commission accepts no responsibility or liability whatsoever with regard to the information on this site.

This information is:

- of a general nature only and is not intended to address the specific circumstances of any particular individual or entity;
- not necessarily comprehensive, complete, accurate or up to date;
- not professional or legal advice (if you need specific advice, you should always consult a suitably qualified professional).

Some data or information on this site may have been created or structured in files or formats that are not error-free and we cannot guarantee that our service will not be interrupted or otherwise affected by such problems. The Commission accepts no responsibility with regard to such problems incurred as a result of using this site or any linked external sites.